Parabolic induction and Jacquet functors for metaplectic groups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Emerton’s Jacquet Functors for Non-Borel Parabolic Subgroups

This paper studies Emerton’s Jacquet module functor for locally analytic representations of p-adic reductive groups, introduced in [Eme06a]. When P is a parabolic subgroup whose Levi factor M is not commutative, we show that passing to an isotypical subspace for the derived subgroup ofM gives rise to essentially admissible locally analytic representations of the torus Z(M), which have a natural...

متن کامل

Generalized Jacquet modules of parabolic induction

In this paper we study the some generalization of Jacquet modules of parabolic induction and construct a filtration on it. The successive quotient of the filtration is written by using the twisting functor.

متن کامل

Affine Jacquet Functors and Harish-chandra Categories

We define an affine Jacquet functor and use it to describe the structure of induced affine Harish-Chandra modules at noncritical levels, extending the theorem of Kac and Kazhdan [10] on the structure of Verma modules in the Bernstein–Gelfand–Gelfand categories O for Kac–Moody algebras. This is combined with a vanishing result for certain extension groups to construct a block decomposition of th...

متن کامل

A Note on Jacquet Functors and Ordinary Parts

In this note we relate Emerton’s Jacquet functor JP to his ordinary parts functor OrdP , by computing the χ-eigenspaces Ord χ P for central characters χ. This fills a small gap in the literature. One consequence is a weak adjunction property for unitary characters χ appearing in JP , with potential applications to local-global compatibility in the p-adic Langlands program in the ordinary case.

متن کامل

Automorphic Forms and Metaplectic Groups

In 1952, Gelfand and Fomin noticed that classical modular forms were related to representations of SL2(R). As a result of this realization, Gelfand later defined GLr automorphic forms via representation theory. A metaplectic form is just an automorphic form defined on a cover of GLr, called a metaplectic group. In this talk, we will carefully construct the metaplectic covers of GL2(F) where F i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2010

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2009.07.001